Data Generators
Data Types
Below is a list of all supported data types for generating data:
Data Type | Spark Data Type | Options | Description |
---|---|---|---|
string | StringType | minLen, maxLen, expression, enableNull |
|
integer | IntegerType | min, max, stddev, mean |
|
long | LongType | min, max, stddev, mean |
|
short | ShortType | min, max, stddev, mean |
|
decimal(precision, scale) | DecimalType(precision, scale) | min, max, stddev, mean |
|
double | DoubleType | min, max, round, stddev, mean |
|
float | FloatType | min, max, round, stddev, mean |
|
date | DateType | min, max, enableNull |
|
timestamp | TimestampType | min, max, enableNull |
|
boolean | BooleanType | ||
binary | BinaryType | minLen, maxLen, enableNull |
|
byte | ByteType | ||
array | ArrayType | arrayMinLen, arrayMaxLen, arrayType |
|
_ | StructType | Implicitly supported when a schema is defined for a field |
Options
All data types
Some options are available to use for all types of data generators. Below is the list along with example and descriptions:
Option | Default | Example | Description |
---|---|---|---|
enableEdgeCase |
false | enableEdgeCase: "true" |
Enable/disable generated data to contain edge cases based on the data type. For example, integer data type has edge cases of (Int.MaxValue, Int.MinValue and 0) |
edgeCaseProbability |
0.0 | edgeCaseProb: "0.1" |
Probability of generating a random edge case value if enableEdgeCase is true |
isUnique |
false | isUnique: "true" |
Enable/disable generated data to be unique for that column. Errors will be thrown when it is unable to generate unique data |
regex |
regex: "ACC[0-9]{10}" |
Regular expression to define pattern generated data should follow | |
seed |
seed: "1" |
Defines the random seed for generating data for that particular column. It will override any seed defined at a global level | |
sql |
sql: "CASE WHEN amount < 10 THEN true ELSE false END" |
Define any SQL statement for generating that columns value. Computation occurs after all non-SQL fields are generated. This means any columns used in the SQL cannot be based on other SQL generated columns. Data type of generated value from SQL needs to match data type defined for the field |
String
Option | Default | Example | Description |
---|---|---|---|
minLen |
1 | minLen: "2" |
Ensures that all generated strings have at least length minLen |
maxLen |
10 | maxLen: "15" |
Ensures that all generated strings have at most length maxLen |
expression |
expression: "#{Name.name}" expression:"#{Address.city}/#{Demographic.maritalStatus}" |
Will generate a string based on the faker expression provided. All possible faker expressions can be found here Expression has to be in format #{<faker expression name>} |
|
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: ("", "\n", "\r", "\t", " ", "\u0000", "\ufff", "İyi günler", "Спасибо", "Καλημέρα", "صباح الخير", " Förlåt", "你好吗", "Nhà vệ sinh ở đâu", "こんにちは", "नमस्ते", "Բարեւ", "Здравейте")
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field()
.name("name")
.type(StringType.instance())
.expression("#{Name.name}")
.enableNull(true)
.nullProbability(0.1)
.minLength(4)
.maxLength(20)
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field
.name("name")
.`type`(StringType)
.expression("#{Name.name}")
.enableNull(true)
.nullProbability(0.1)
.minLength(4)
.maxLength(20)
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
schema:
fields:
- name: "name"
type: "string"
generator:
options:
expression: "#{Name.name}"
enableNull: true
nullProb: 0.1
minLength: 4
maxLength: 20
Numeric
For all the numeric data types, there are 4 options to choose from: min, max and maxValue.
Generally speaking, you only need to define one of min or minValue, similarly with max or maxValue.
The reason why there are 2 options for each is because of when metadata is automatically gathered, we gather the
statistics of the observed min and max values. Also, it will attempt to gather any restriction on the min or max value
as defined by the data source (i.e. max value as per database type).
Integer/Long/Short
Option | Default | Example | Description |
---|---|---|---|
min |
0 | min: "2" |
Ensures that all generated values are greater than or equal to min |
max |
1000 | max: "25" |
Ensures that all generated values are less than or equal to max |
stddev |
1.0 | stddev: "2.0" |
Standard deviation for normal distributed data |
mean |
max - min |
mean: "5.0" |
Mean for normal distributed data |
Edge cases Integer: (2147483647, -2147483648, 0)
Edge cases Long: (9223372036854775807, -9223372036854775808, 0)
Edge cases Short: (32767, -32768, 0)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("year").type(IntegerType.instance()).min(2020).max(2023),
field().name("customer_id").type(LongType.instance()),
field().name("customer_group").type(ShortType.instance())
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("year").`type`(IntegerType).min(2020).max(2023),
field.name("customer_id").`type`(LongType),
field.name("customer_group").`type`(ShortType)
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "year"
type: "integer"
generator:
options:
min: 2020
max: 2023
- name: "customer_id"
type: "long"
- name: "customer_group"
type: "short"
Decimal
Option | Default | Example | Description |
---|---|---|---|
min |
0 | min: "2" |
Ensures that all generated values are greater than or equal to min |
max |
1000 | max: "25" |
Ensures that all generated values are less than or equal to max |
stddev |
1.0 | stddev: "2.0" |
Standard deviation for normal distributed data |
mean |
max - min |
mean: "5.0" |
Mean for normal distributed data |
numericPrecision |
10 | precision: "25" |
The maximum number of digits |
numericScale |
0 | scale: "25" |
The number of digits on the right side of the decimal point (has to be less than or equal to precision) |
Edge cases Decimal: (9223372036854775807, -9223372036854775808, 0)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("balance").type(DecimalType.instance()).numericPrecision(10).numericScale(5)
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("balance").`type`(DecimalType).numericPrecision(10).numericScale(5)
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "balance"
type: "decimal"
generator:
options:
precision: 10
scale: 5
Double/Float
Option | Default | Example | Description |
---|---|---|---|
min |
0.0 | min: "2.1" |
Ensures that all generated values are greater than or equal to min |
max |
1000.0 | max: "25.9" |
Ensures that all generated values are less than or equal to max |
round |
N/A | round: "2" |
Round to particular number of decimal places |
stddev |
1.0 | stddev: "2.0" |
Standard deviation for normal distributed data |
mean |
max - min |
mean: "5.0" |
Mean for normal distributed data |
Edge cases Double: (+infinity, 1.7976931348623157e+308, 4.9e-324, 0.0, -0.0, -1.7976931348623157e+308, -infinity,
NaN)
Edge cases Float: (+infinity, 3.4028235e+38, 1.4e-45, 0.0, -0.0, -3.4028235e+38, -infinity, NaN)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("amount").type(DoubleType.instance())
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("amount").`type`(DoubleType)
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "amount"
type: "double"
Date
Option | Default | Example | Description |
---|---|---|---|
min |
now() - 365 days | min: "2023-01-31" |
Ensures that all generated values are greater than or equal to min |
max |
now() | max: "2023-12-31" |
Ensures that all generated values are less than or equal to max |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: (0001-01-01, 1582-10-15, 1970-01-01, 9999-12-31) (reference)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("created_date").type(DateType.instance()).min(java.sql.Date.valueOf("2020-01-01"))
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("created_date").`type`(DateType).min(java.sql.Date.valueOf("2020-01-01"))
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "created_date"
type: "date"
generator:
options:
min: "2020-01-01"
Timestamp
Option | Default | Example | Description |
---|---|---|---|
min |
now() - 365 days | min: "2023-01-31 23:10:10" |
Ensures that all generated values are greater than or equal to min |
max |
now() | max: "2023-12-31 23:10:10" |
Ensures that all generated values are less than or equal to max |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: (0001-01-01 00:00:00, 1582-10-15 23:59:59, 1970-01-01 00:00:00, 9999-12-31 23:59:59)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("created_time").type(TimestampType.instance()).min(java.sql.Timestamp.valueOf("2020-01-01 00:00:00"))
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("created_time").`type`(TimestampType).min(java.sql.Timestamp.valueOf("2020-01-01 00:00:00"))
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "created_time"
type: "timestamp"
generator:
options:
min: "2020-01-01 00:00:00"
Binary
Option | Default | Example | Description |
---|---|---|---|
minLen |
1 | minLen: "2" |
Ensures that all generated array of bytes have at least length minLen |
maxLen |
20 | maxLen: "15" |
Ensures that all generated array of bytes have at most length maxLen |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: ("", "\n", "\r", "\t", " ", "\u0000", "\ufff", -128, 127)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("payload").type(BinaryType.instance())
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("payload").`type`(BinaryType)
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "payload"
type: "binary"
Array
Option | Default | Example | Description |
---|---|---|---|
arrayMinLen |
0 | arrayMinLen: "2" |
Ensures that all generated arrays have at least length arrayMinLen |
arrayMaxLen |
5 | arrayMaxLen: "15" |
Ensures that all generated arrays have at most length arrayMaxLen |
arrayType |
arrayType: "double" |
Inner data type of the array. Optional when using Java/Scala API. Allows for nested data types to be defined like struct | |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field().name("last_5_amounts").type(ArrayType.instance()).arrayType("double")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.schema(
field.name("last_5_amounts").`type`(ArrayType).arrayType("double")
)
name: "csv_file"
steps:
- name: "transactions"
...
schema:
fields:
- name: "last_5_amounts"
type: "array<double>"