Data Generators
Data Types
Below is a list of all supported data types for generating data:
Data Type | Options |
---|---|
string, StringType | String options |
integer, IntegerType | Integer options |
long, LongType | Long options |
short, ShortType | Short options |
decimal(precision, scale), DecimalType | Decimal options |
double, DoubleType | Double options |
float, FloatType | Float options |
date, DateType | Date options |
timestamp, TimestampType | Timestamp options |
boolean, BooleanType | |
binary, BinaryType | Binary options |
byte, ByteType | Byte options |
array, ArrayType | Array options |
struct, StructType |
Options
All data types
Some options are available to use for all types of data generators. Below is the list along with example and descriptions:
Option | Default | Example | Description |
---|---|---|---|
enableEdgeCase |
false | enableEdgeCase: "true" |
Enable/disable generated data to contain edge cases based on the data type. For example, integer data type has edge cases of (Int.MaxValue, Int.MinValue and 0) |
edgeCaseProbability |
0.0 | edgeCaseProb: "0.1" |
Probability of generating a random edge case value if enableEdgeCase is true |
isUnique |
false | isUnique: "true" |
Enable/disable generated data to be unique for that field. Errors will be thrown when it is unable to generate unique data |
regex |
regex: "ACC[0-9]{10}" |
Regular expression to define pattern generated data should follow | |
seed |
seed: "1" |
Defines the random seed for generating data for that particular field. It will override any seed defined at a global level | |
sql |
sql: "CASE WHEN amount < 10 THEN true ELSE false END" |
Define any SQL statement for generating that fields value. Computation occurs after all non-SQL fields are generated. This means any fields used in the SQL cannot be based on other SQL generated fields. Data type of generated value from SQL needs to match data type defined for the field. See Advanced SQL Generation for more examples | |
oneOf |
oneOf: ["open", "closed", "suspended"] or oneOf: ["open->0.8", "closed->0.1", "suspended->0.1"] |
Field can only take one of the prescribed values. Chance of value being chosen is based on the weight assigned to it. Weight can be any double value. | |
omit |
false | omit: "true" |
If true, field will not be included in final data generated. Useful for intermediate transformations that are not included in final outcome |
String
Option | Default | Example | Description |
---|---|---|---|
minLen |
1 | minLen: "2" |
Ensures that all generated strings have at least length minLen |
maxLen |
10 | maxLen: "15" |
Ensures that all generated strings have at most length maxLen |
expression |
expression: "#{Name.name}" expression:"#{Address.city}/#{Demographic.maritalStatus}" |
Will generate a string based on the faker expression provided. All possible faker expressions can be found here Expression has to be in format #{<faker expression name>} |
|
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
uuid |
uuid: "account_id" |
Generate a UUID value. If value is non-empty, UUID value will be generated based off column value |
Edge cases: ("", "\n", "\r", "\t", " ", "\u0000", "\ufff", "İyi günler", "Спасибо", "Καλημέρα", "صباح الخير", " Förlåt", "你好吗", "Nhà vệ sinh ở đâu", "こんにちは", "नमस्ते", "Բարեւ", "Здравейте")
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field()
.name("customer_name")
.type(StringType.instance())
.expression("#{Name.name}")
.enableNull(true)
.nullProbability(0.1)
.minLength(4)
.maxLength(20),
field()
.name("account_id")
.type(StringType.instance())
.regex("ACC[0-9]{10}")
.isUnique(true)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field()
.name("status")
.type(StringType.instance())
.oneOf("open", "closed", "suspended"),
field()
.name("priority")
.type(StringType.instance())
.oneOf("high->0.1", "medium->0.7", "low->0.2"),
field()
.name("user_uuid")
.type(StringType.instance())
.uuid("user_id"),
field()
.name("address")
.type(StringType.instance())
.expression("#{Address.city}/#{Demographic.maritalStatus}")
.minLength(10)
.maxLength(50),
field()
.name("calculated_field")
.type(StringType.instance())
.sql("CASE WHEN amount < 10 THEN 'small' ELSE 'large' END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field
.name("customer_name")
.`type`(StringType)
.expression("#{Name.name}")
.enableNull(true)
.nullProbability(0.1)
.minLength(4)
.maxLength(20),
field
.name("account_id")
.`type`(StringType)
.regex("ACC[0-9]{10}")
.isUnique(true)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field
.name("status")
.`type`(StringType)
.oneOf("open", "closed", "suspended"),
field
.name("priority")
.`type`(StringType)
.oneOf("high->0.1", "medium->0.7", "low->0.2"),
field
.name("user_uuid")
.`type`(StringType)
.uuid("user_id"),
field
.name("address")
.`type`(StringType)
.expression("#{Address.city}/#{Demographic.maritalStatus}")
.minLength(10)
.maxLength(50),
field
.name("calculated_field")
.`type`(StringType)
.sql("CASE WHEN amount < 10 THEN 'small' ELSE 'large' END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "customer_name"
type: "string"
options:
expression: "#{Name.name}"
enableNull: true
nullProb: 0.1
minLen: 4
maxLen: 20
- name: "account_id"
type: "string"
options:
regex: "ACC[0-9]{10}"
isUnique: true
enableEdgeCase: true
edgeCaseProb: 0.05
- name: "status"
type: "string"
options:
oneOf: ["open", "closed", "suspended"]
- name: "priority"
type: "string"
options:
oneOf: ["high->0.1", "medium->0.7", "low->0.2"]
- name: "user_uuid"
type: "string"
options:
uuid: "user_id"
- name: "address"
type: "string"
options:
expression: "#{Address.city}/#{Demographic.maritalStatus}"
minLen: 10
maxLen: 50
- name: "calculated_field"
type: "string"
options:
sql: "CASE WHEN amount < 10 THEN 'small' ELSE 'large' END"
Numeric
For all the numeric data types, there are 4 options to choose from: min, max and maxValue.
Generally speaking, you only need to define one of min or minValue, similarly with max or maxValue.
The reason why there are 2 options for each is because of when metadata is automatically gathered, we gather the
statistics of the observed min and max values. Also, it will attempt to gather any restriction on the min or max value
as defined by the data source (i.e. max value as per database type).
Integer/Long/Short
Option | Default | Example | Description |
---|---|---|---|
min |
0 | min: "2" |
Ensures that all generated values are greater than or equal to min |
max |
1000 | max: "25" |
Ensures that all generated values are less than or equal to max |
stddev |
1.0 | stddev: "2.0" |
Standard deviation for normal distributed data |
mean |
max - min |
mean: "5.0" |
Mean for normal distributed data |
distribution |
distribution: "exponential" |
Type of distribution of the data. Either exponential or normal |
|
distributionRateParam |
distributionRateParam: "1.0" |
If distribution is exponential , rate parameter to adjust exponential distribution |
|
incremental |
1 | incremental: "1" |
Values will be incremental. Define a start number to increment from |
Edge cases Integer: (2147483647, -2147483648, 0)
Edge cases Long: (9223372036854775807, -9223372036854775808, 0)
Edge cases Short: (32767, -32768, 0)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("year").type(IntegerType.instance()).min(2020).max(2023),
field().name("customer_id").type(LongType.instance()).incremental(1000),
field().name("customer_group").type(ShortType.instance()).oneOf("1", "2", "3"),
field().name("transaction_amount").type(IntegerType.instance())
.min(1).max(1000)
.distribution("normal")
.mean(100.0)
.stddev(25.0),
field().name("retry_count").type(IntegerType.instance())
.min(0).max(10)
.distribution("exponential")
.distributionRateParam(2.0),
field().name("unique_sequence").type(IntegerType.instance())
.min(1).max(99999)
.isUnique(true)
.enableEdgeCase(true)
.edgeCaseProbability(0.1),
field().name("priority_level").type(ShortType.instance())
.oneOf("high->1", "medium->2", "low->3")
.regex("[1-3]"),
field().name("calculated_score").type(IntegerType.instance())
.sql("CASE WHEN transaction_amount > 500 THEN 100 ELSE 50 END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("year").`type`(IntegerType).min(2020).max(2023),
field.name("customer_id").`type`(LongType).incremental(1000),
field.name("customer_group").`type`(ShortType).oneOf("1", "2", "3"),
field.name("transaction_amount").`type`(IntegerType)
.min(1).max(1000)
.distribution("normal")
.mean(100.0)
.stddev(25.0),
field.name("retry_count").`type`(IntegerType)
.min(0).max(10)
.distribution("exponential")
.distributionRateParam(2.0),
field.name("unique_sequence").`type`(IntegerType)
.min(1).max(99999)
.isUnique(true)
.enableEdgeCase(true)
.edgeCaseProbability(0.1),
field.name("priority_level").`type`(ShortType)
.oneOf("high->1", "medium->2", "low->3")
.regex("[1-3]"),
field.name("calculated_score").`type`(IntegerType)
.sql("CASE WHEN transaction_amount > 500 THEN 100 ELSE 50 END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "year"
type: "integer"
options:
min: 2020
max: 2023
- name: "customer_id"
type: "long"
options:
incremental: 1000
- name: "customer_group"
type: "short"
options:
oneOf: ["1", "2", "3"]
- name: "transaction_amount"
type: "integer"
options:
min: 1
max: 1000
distribution: "normal"
mean: 100.0
stddev: 25.0
- name: "retry_count"
type: "integer"
options:
min: 0
max: 10
distribution: "exponential"
distributionRateParam: 2.0
- name: "unique_sequence"
type: "integer"
options:
min: 1
max: 99999
isUnique: true
enableEdgeCase: true
edgeCaseProb: 0.1
- name: "priority_level"
type: "short"
options:
oneOf: ["high->1", "medium->2", "low->3"]
regex: "[1-3]"
- name: "calculated_score"
type: "integer"
options:
sql: "CASE WHEN transaction_amount > 500 THEN 100 ELSE 50 END"
Decimal
Option | Default | Example | Description |
---|---|---|---|
min |
0 | min: "2" |
Ensures that all generated values are greater than or equal to min |
max |
1000 | max: "25" |
Ensures that all generated values are less than or equal to max |
stddev |
1.0 | stddev: "2.0" |
Standard deviation for normal distributed data |
mean |
max - min |
mean: "5.0" |
Mean for normal distributed data |
numericPrecision |
10 | precision: "25" |
The maximum number of digits |
numericScale |
0 | scale: "25" |
The number of digits on the right side of the decimal point (has to be less than or equal to precision) |
distribution |
distribution: "exponential" |
Type of distribution of the data. Either exponential or normal |
|
distributionRateParam |
distributionRateParam: "1.0" |
If distribution is exponential , rate parameter to adjust exponential distribution |
Edge cases Decimal: (9223372036854775807, -9223372036854775808, 0)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("account_balance").type(DecimalType.instance())
.numericPrecision(10).numericScale(2)
.min(new BigDecimal("0.00")).max(new BigDecimal("99999.99")),
field().name("interest_rate").type(DecimalType.instance())
.numericPrecision(5).numericScale(4)
.min(new BigDecimal("0.0001")).max(new BigDecimal("0.2500"))
.distribution("normal")
.mean(0.05)
.stddev(0.02),
field().name("commission_rate").type(DecimalType.instance())
.numericPrecision(6).numericScale(3)
.oneOf("0.025", "0.050", "0.075"),
field().name("bonus_multiplier").type(DecimalType.instance())
.numericPrecision(3).numericScale(1)
.distribution("exponential")
.distributionRateParam(1.5)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field().name("unique_transaction_fee").type(DecimalType.instance())
.numericPrecision(8).numericScale(2)
.min(new BigDecimal("1.00")).max(new BigDecimal("999.99"))
.isUnique(true),
field().name("calculated_total").type(DecimalType.instance())
.numericPrecision(12).numericScale(2)
.sql("CASE WHEN account_balance > 1000 THEN account_balance * 1.1 ELSE account_balance END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("account_balance").`type`(DecimalType)
.numericPrecision(10).numericScale(2)
.min(new java.math.BigDecimal("0.00")).max(new java.math.BigDecimal("99999.99")),
field.name("interest_rate").`type`(DecimalType)
.numericPrecision(5).numericScale(4)
.min(new java.math.BigDecimal("0.0001")).max(new java.math.BigDecimal("0.2500"))
.distribution("normal")
.mean(0.05)
.stddev(0.02),
field.name("commission_rate").`type`(DecimalType)
.numericPrecision(6).numericScale(3)
.oneOf("0.025", "0.050", "0.075"),
field.name("bonus_multiplier").`type`(DecimalType)
.numericPrecision(3).numericScale(1)
.distribution("exponential")
.distributionRateParam(1.5)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field.name("unique_transaction_fee").`type`(DecimalType)
.numericPrecision(8).numericScale(2)
.min(new java.math.BigDecimal("1.00")).max(new java.math.BigDecimal("999.99"))
.isUnique(true),
field.name("calculated_total").`type`(DecimalType)
.numericPrecision(12).numericScale(2)
.sql("CASE WHEN account_balance > 1000 THEN account_balance * 1.1 ELSE account_balance END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "account_balance"
type: "decimal"
options:
precision: 10
scale: 2
min: "0.00"
max: "99999.99"
- name: "interest_rate"
type: "decimal"
options:
precision: 5
scale: 4
min: "0.0001"
max: "0.2500"
distribution: "normal"
mean: 0.05
stddev: 0.02
- name: "commission_rate"
type: "decimal"
options:
precision: 6
scale: 3
oneOf: ["0.025", "0.050", "0.075"]
- name: "bonus_multiplier"
type: "decimal"
options:
precision: 3
scale: 1
distribution: "exponential"
distributionRateParam: 1.5
enableEdgeCase: true
edgeCaseProb: 0.05
- name: "unique_transaction_fee"
type: "decimal"
options:
precision: 8
scale: 2
min: "1.00"
max: "999.99"
isUnique: true
- name: "calculated_total"
type: "decimal"
options:
precision: 12
scale: 2
sql: "CASE WHEN account_balance > 1000 THEN account_balance * 1.1 ELSE account_balance END"
Double/Float
Option | Default | Example | Description |
---|---|---|---|
min |
0.0 | min: "2.1" |
Ensures that all generated values are greater than or equal to min |
max |
1000.0 | max: "25.9" |
Ensures that all generated values are less than or equal to max |
round |
N/A | round: "2" |
Round to particular number of decimal places |
stddev |
1.0 | stddev: "2.0" |
Standard deviation for normal distributed data |
mean |
max - min |
mean: "5.0" |
Mean for normal distributed data |
round |
round: "2" |
Number of decimal places to round to (round up) | |
distribution |
distribution: "exponential" |
Type of distribution of the data. Either exponential or normal |
|
distributionRateParam |
distributionRateParam: "1.0" |
If distribution is exponential , rate parameter to adjust exponential distribution |
Edge cases Double: (+infinity, 1.7976931348623157e+308, 4.9e-324, 0.0, -0.0, -1.7976931348623157e+308, -infinity,
NaN)
Edge cases Float: (+infinity, 3.4028235e+38, 1.4e-45, 0.0, -0.0, -3.4028235e+38, -infinity, NaN)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("transaction_amount").type(DoubleType.instance())
.min(1.0).max(10000.0)
.round(2),
field().name("processing_fee").type(FloatType.instance())
.min(0.5f).max(99.99f)
.round(2)
.distribution("normal")
.mean(5.0)
.stddev(2.0),
field().name("exchange_rate").type(DoubleType.instance())
.min(0.1).max(5.0)
.round(4)
.distribution("exponential")
.distributionRateParam(0.8),
field().name("discount_percentage").type(FloatType.instance())
.oneOf("0.05", "0.10", "0.15", "0.25"),
field().name("unique_score").type(DoubleType.instance())
.min(0.0).max(100.0)
.round(3)
.isUnique(true)
.enableEdgeCase(true)
.edgeCaseProbability(0.02),
field().name("weighted_value").type(DoubleType.instance())
.oneOf("low->10.5", "medium->25.75", "high->50.0")
.round(2),
field().name("calculated_ratio").type(FloatType.instance())
.sql("CASE WHEN transaction_amount > 1000 THEN 1.5 ELSE 1.0 END")
.round(1)
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("transaction_amount").`type`(DoubleType)
.min(1.0).max(10000.0)
.round(2),
field.name("processing_fee").`type`(FloatType)
.min(0.5f).max(99.99f)
.round(2)
.distribution("normal")
.mean(5.0)
.stddev(2.0),
field.name("exchange_rate").`type`(DoubleType)
.min(0.1).max(5.0)
.round(4)
.distribution("exponential")
.distributionRateParam(0.8),
field.name("discount_percentage").`type`(FloatType)
.oneOf("0.05", "0.10", "0.15", "0.25"),
field.name("unique_score").`type`(DoubleType)
.min(0.0).max(100.0)
.round(3)
.isUnique(true)
.enableEdgeCase(true)
.edgeCaseProbability(0.02),
field.name("weighted_value").`type`(DoubleType)
.oneOf("low->10.5", "medium->25.75", "high->50.0")
.round(2),
field.name("calculated_ratio").`type`(FloatType)
.sql("CASE WHEN transaction_amount > 1000 THEN 1.5 ELSE 1.0 END")
.round(1)
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "transaction_amount"
type: "double"
options:
min: 1.0
max: 10000.0
round: 2
- name: "processing_fee"
type: "float"
options:
min: 0.5
max: 99.99
round: 2
distribution: "normal"
mean: 5.0
stddev: 2.0
- name: "exchange_rate"
type: "double"
options:
min: 0.1
max: 5.0
round: 4
distribution: "exponential"
distributionRateParam: 0.8
- name: "discount_percentage"
type: "float"
options:
oneOf: ["0.05", "0.10", "0.15", "0.25"]
- name: "unique_score"
type: "double"
options:
min: 0.0
max: 100.0
round: 3
isUnique: true
enableEdgeCase: true
edgeCaseProb: 0.02
- name: "weighted_value"
type: "double"
options:
oneOf: ["low->10.5", "medium->25.75", "high->50.0"]
round: 2
- name: "calculated_ratio"
type: "float"
options:
sql: "CASE WHEN transaction_amount > 1000 THEN 1.5 ELSE 1.0 END"
round: 1
Step options
You can control behavior at the step level for generation.
Enable/disable generation per step
Disable data generation for specific steps when you want to use them only for reference in foreign key relationships.
Partitioning and throughput
Control data partitioning and parallelism for improved performance with large datasets.
Reference mode
Use existing data as reference instead of generating new data for a step. This is useful when you want to reference real data in foreign key relationships.
Scala Example | Java Example | YAML Example
Key positions and clustering
For databases that support primary key positions and clustering order (like Cassandra), you can specify the order of primary keys and clustering keys.
Advanced SQL Generation
Data Caterer supports complex SQL expressions for generating sophisticated data relationships and calculations. SQL expressions are evaluated after all non-SQL fields have been generated.
Array Operations and Aggregations
Extract data from arrays, perform aggregations, and create complex nested data structures.
// Extract latest status from array of updates
field().name("current_status")
.sql("element_at(sort_array(update_history.status, false), 1)"),
// Calculate year from date field
field().name("year").type(IntegerType.instance())
.sql("YEAR(date)"),
// Get first transaction date from sorted array
field().name("first_transaction_date").type(DateType.instance())
.sql("element_at(sort_array(transactions.transaction_date), 1)")
// Extract latest status from array of updates
field.name("current_status")
.sql("element_at(sort_array(update_history.status, false), 1)"),
// Calculate year from date field
field.name("year").`type`(IntegerType)
.sql("YEAR(date)"),
// Get first transaction date from sorted array
field.name("first_transaction_date").`type`(DateType)
.sql("element_at(sort_array(transactions.transaction_date), 1)")
Nested Field References and Calculations
Access nested fields and perform complex calculations across multiple data levels.
// Reference nested field value
field().name("customer_name")
.sql("customer_details.name"),
// Calculate balance with interest based on account type
field().name("balance_with_interest").type(DoubleType.instance())
.sql("CASE WHEN account_details.account_type = 'premium' THEN balance * 1.05 ELSE balance * 1.02 END"),
// Aggregate transaction amounts
field().name("total_transaction_amount").type(DoubleType.instance())
.sql("aggregate(transactions.amount, 0.0, (acc, x) -> acc + x)")
// Reference nested field value
field.name("customer_name")
.sql("customer_details.name"),
// Calculate balance with interest based on account type
field.name("balance_with_interest").`type`(DoubleType)
.sql("CASE WHEN account_details.account_type = 'premium' THEN balance * 1.05 ELSE balance * 1.02 END"),
// Aggregate transaction amounts
field.name("total_transaction_amount").`type`(DoubleType)
.sql("aggregate(transactions.amount, 0.0, (acc, x) -> acc + x)")
fields:
- name: "customer_name"
options:
sql: "customer_details.name"
- name: "balance_with_interest"
type: "double"
options:
sql: "CASE WHEN account_details.account_type = 'premium' THEN balance * 1.05 ELSE balance * 1.02 END"
- name: "total_transaction_amount"
type: "double"
options:
sql: "aggregate(transactions.amount, 0.0, (acc, x) -> acc + x)"
String Operations and Pattern Matching
Manipulate strings, extract patterns, and create formatted outputs.
// Concatenate multiple fields with formatting
field().name("account_display_name")
.sql("CONCAT(customer_details.name, ' - ', account_type, ' (', account_id, ')')"),
// Extract domain from email addresses
field().name("email_domain")
.sql("SUBSTRING_INDEX(customer_details.email, '@', -1)"),
// Generate formatted account number
field().name("formatted_account_number")
.sql("CONCAT('ACC-', LPAD(account_number, 8, '0'))")
// Concatenate multiple fields with formatting
field.name("account_display_name")
.sql("CONCAT(customer_details.name, ' - ', account_type, ' (', account_id, ')')"),
// Extract domain from email addresses
field.name("email_domain")
.sql("SUBSTRING_INDEX(customer_details.email, '@', -1)"),
// Generate formatted account number
field.name("formatted_account_number")
.sql("CONCAT('ACC-', LPAD(account_number, 8, '0'))")
fields:
- name: "account_display_name"
options:
sql: "CONCAT(customer_details.name, ' - ', account_type, ' (', account_id, ')')"
- name: "email_domain"
options:
sql: "SUBSTRING_INDEX(customer_details.email, '@', -1)"
- name: "formatted_account_number"
options:
sql: "CONCAT('ACC-', LPAD(account_number, 8, '0'))"
Date and Time Operations
Perform complex date calculations, extract date parts, and handle time zones.
// Calculate age from birth date
field().name("age").type(IntegerType.instance())
.sql("DATEDIFF(CURRENT_DATE(), birth_date) / 365"),
// Extract quarter from date
field().name("quarter").type(IntegerType.instance())
.sql("QUARTER(transaction_date)"),
// Calculate business days between dates
field().name("business_days_since_opening").type(IntegerType.instance())
.sql("CASE WHEN DAYOFWEEK(open_date) IN (1, 7) THEN 0 ELSE DATEDIFF(CURRENT_DATE(), open_date) - (DATEDIFF(CURRENT_DATE(), open_date) / 7 * 2) END")
// Calculate age from birth date
field.name("age").`type`(IntegerType)
.sql("DATEDIFF(CURRENT_DATE(), birth_date) / 365"),
// Extract quarter from date
field.name("quarter").`type`(IntegerType)
.sql("QUARTER(transaction_date)"),
// Calculate business days between dates
field.name("business_days_since_opening").`type`(IntegerType)
.sql("CASE WHEN DAYOFWEEK(open_date) IN (1, 7) THEN 0 ELSE DATEDIFF(CURRENT_DATE(), open_date) - (DATEDIFF(CURRENT_DATE(), open_date) / 7 * 2) END")
fields:
- name: "age"
type: "integer"
options:
sql: "DATEDIFF(CURRENT_DATE(), birth_date) / 365"
- name: "quarter"
type: "integer"
options:
sql: "QUARTER(transaction_date)"
- name: "business_days_since_opening"
type: "integer"
options:
sql: "CASE WHEN DAYOFWEEK(open_date) IN (1, 7) THEN 0 ELSE DATEDIFF(CURRENT_DATE(), open_date) - (DATEDIFF(CURRENT_DATE(), open_date) / 7 * 2) END"
Window Functions and Analytics
Use window functions for ranking, running totals, and analytical calculations.
// Rank customers by balance within each region
field().name("balance_rank").type(IntegerType.instance())
.sql("ROW_NUMBER() OVER (PARTITION BY region ORDER BY balance DESC)"),
// Calculate running total of transactions
field().name("running_total").type(DoubleType.instance())
.sql("SUM(transaction_amount) OVER (PARTITION BY account_id ORDER BY transaction_date ROWS UNBOUNDED PRECEDING)"),
// Calculate percentage of total within group
field().name("balance_percentage").type(DoubleType.instance())
.sql("(balance / SUM(balance) OVER (PARTITION BY account_type)) * 100")
// Rank customers by balance within each region
field.name("balance_rank").`type`(IntegerType)
.sql("ROW_NUMBER() OVER (PARTITION BY region ORDER BY balance DESC)"),
// Calculate running total of transactions
field.name("running_total").`type`(DoubleType)
.sql("SUM(transaction_amount) OVER (PARTITION BY account_id ORDER BY transaction_date ROWS UNBOUNDED PRECEDING)"),
// Calculate percentage of total within group
field.name("balance_percentage").`type`(DoubleType)
.sql("(balance / SUM(balance) OVER (PARTITION BY account_type)) * 100")
fields:
- name: "balance_rank"
type: "integer"
options:
sql: "ROW_NUMBER() OVER (PARTITION BY region ORDER BY balance DESC)"
- name: "running_total"
type: "double"
options:
sql: "SUM(transaction_amount) OVER (PARTITION BY account_id ORDER BY transaction_date ROWS UNBOUNDED PRECEDING)"
- name: "balance_percentage"
type: "double"
options:
sql: "(balance / SUM(balance) OVER (PARTITION BY account_type)) * 100"
Date
Option | Default | Example | Description |
---|---|---|---|
min |
now() - 365 days | min: "2023-01-31" |
Ensures that all generated values are greater than or equal to min |
max |
now() | max: "2023-12-31" |
Ensures that all generated values are less than or equal to max |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: (0001-01-01, 1582-10-15, 1970-01-01, 9999-12-31) (reference)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("created_date").type(DateType.instance())
.min(java.sql.Date.valueOf("2020-01-01"))
.max(java.sql.Date.valueOf("2023-12-31")),
field().name("birth_date").type(DateType.instance())
.min(java.sql.Date.valueOf("1950-01-01"))
.max(java.sql.Date.valueOf("2005-12-31"))
.enableNull(true)
.nullProbability(0.05),
field().name("expiry_date").type(DateType.instance())
.oneOf("2024-01-01", "2024-06-01", "2024-12-31"),
field().name("random_date_with_edges").type(DateType.instance())
.min(java.sql.Date.valueOf("2022-01-01"))
.max(java.sql.Date.valueOf("2024-01-01"))
.enableEdgeCase(true)
.edgeCaseProbability(0.1),
field().name("unique_event_date").type(DateType.instance())
.min(java.sql.Date.valueOf("2023-01-01"))
.max(java.sql.Date.valueOf("2023-12-31"))
.isUnique(true),
field().name("calculated_date").type(DateType.instance())
.sql("CASE WHEN created_date < '2022-01-01' THEN '2022-01-01' ELSE created_date END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("created_date").`type`(DateType)
.min(java.sql.Date.valueOf("2020-01-01"))
.max(java.sql.Date.valueOf("2023-12-31")),
field.name("birth_date").`type`(DateType)
.min(java.sql.Date.valueOf("1950-01-01"))
.max(java.sql.Date.valueOf("2005-12-31"))
.enableNull(true)
.nullProbability(0.05),
field.name("expiry_date").`type`(DateType)
.oneOf("2024-01-01", "2024-06-01", "2024-12-31"),
field.name("random_date_with_edges").`type`(DateType)
.min(java.sql.Date.valueOf("2022-01-01"))
.max(java.sql.Date.valueOf("2024-01-01"))
.enableEdgeCase(true)
.edgeCaseProbability(0.1),
field.name("unique_event_date").`type`(DateType)
.min(java.sql.Date.valueOf("2023-01-01"))
.max(java.sql.Date.valueOf("2023-12-31"))
.isUnique(true),
field.name("calculated_date").`type`(DateType)
.sql("CASE WHEN created_date < '2022-01-01' THEN '2022-01-01' ELSE created_date END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "created_date"
type: "date"
options:
min: "2020-01-01"
max: "2023-12-31"
- name: "birth_date"
type: "date"
options:
min: "1950-01-01"
max: "2005-12-31"
enableNull: true
nullProb: 0.05
- name: "expiry_date"
type: "date"
options:
oneOf: ["2024-01-01", "2024-06-01", "2024-12-31"]
- name: "random_date_with_edges"
type: "date"
options:
min: "2022-01-01"
max: "2024-01-01"
enableEdgeCase: true
edgeCaseProb: 0.1
- name: "unique_event_date"
type: "date"
options:
min: "2023-01-01"
max: "2023-12-31"
isUnique: true
- name: "calculated_date"
type: "date"
options:
sql: "CASE WHEN created_date < '2022-01-01' THEN '2022-01-01' ELSE created_date END"
Timestamp
Option | Default | Example | Description |
---|---|---|---|
min |
now() - 365 days | min: "2023-01-31 23:10:10" |
Ensures that all generated values are greater than or equal to min |
max |
now() | max: "2023-12-31 23:10:10" |
Ensures that all generated values are less than or equal to max |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: (0001-01-01 00:00:00, 1582-10-15 23:59:59, 1970-01-01 00:00:00, 9999-12-31 23:59:59)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("created_time").type(TimestampType.instance())
.min(java.sql.Timestamp.valueOf("2020-01-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-12-31 23:59:59")),
field().name("last_login").type(TimestampType.instance())
.min(java.sql.Timestamp.valueOf("2023-01-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-12-31 23:59:59"))
.enableNull(true)
.nullProbability(0.2),
field().name("scheduled_time").type(TimestampType.instance())
.oneOf("2024-01-01 09:00:00", "2024-01-01 12:00:00", "2024-01-01 17:00:00"),
field().name("event_timestamp").type(TimestampType.instance())
.min(java.sql.Timestamp.valueOf("2023-06-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-12-31 23:59:59"))
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field().name("unique_activity_time").type(TimestampType.instance())
.min(java.sql.Timestamp.valueOf("2023-01-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-01-31 23:59:59"))
.isUnique(true),
field().name("calculated_timestamp").type(TimestampType.instance())
.sql("CASE WHEN created_time < '2022-01-01 00:00:00' THEN '2022-01-01 00:00:00' ELSE created_time END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("created_time").`type`(TimestampType)
.min(java.sql.Timestamp.valueOf("2020-01-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-12-31 23:59:59")),
field.name("last_login").`type`(TimestampType)
.min(java.sql.Timestamp.valueOf("2023-01-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-12-31 23:59:59"))
.enableNull(true)
.nullProbability(0.2),
field.name("scheduled_time").`type`(TimestampType)
.oneOf("2024-01-01 09:00:00", "2024-01-01 12:00:00", "2024-01-01 17:00:00"),
field.name("event_timestamp").`type`(TimestampType)
.min(java.sql.Timestamp.valueOf("2023-06-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-12-31 23:59:59"))
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field.name("unique_activity_time").`type`(TimestampType)
.min(java.sql.Timestamp.valueOf("2023-01-01 00:00:00"))
.max(java.sql.Timestamp.valueOf("2023-01-31 23:59:59"))
.isUnique(true),
field.name("calculated_timestamp").`type`(TimestampType)
.sql("CASE WHEN created_time < '2022-01-01 00:00:00' THEN '2022-01-01 00:00:00' ELSE created_time END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "created_time"
type: "timestamp"
options:
min: "2020-01-01 00:00:00"
max: "2023-12-31 23:59:59"
- name: "last_login"
type: "timestamp"
options:
min: "2023-01-01 00:00:00"
max: "2023-12-31 23:59:59"
enableNull: true
nullProb: 0.2
- name: "scheduled_time"
type: "timestamp"
options:
oneOf: ["2024-01-01 09:00:00", "2024-01-01 12:00:00", "2024-01-01 17:00:00"]
- name: "event_timestamp"
type: "timestamp"
options:
min: "2023-06-01 00:00:00"
max: "2023-12-31 23:59:59"
enableEdgeCase: true
edgeCaseProb: 0.05
- name: "unique_activity_time"
type: "timestamp"
options:
min: "2023-01-01 00:00:00"
max: "2023-01-31 23:59:59"
isUnique: true
- name: "calculated_timestamp"
type: "timestamp"
options:
sql: "CASE WHEN created_time < '2022-01-01 00:00:00' THEN '2022-01-01 00:00:00' ELSE created_time END"
Binary
Option | Default | Example | Description |
---|---|---|---|
minLen |
1 | minLen: "2" |
Ensures that all generated array of bytes have at least length minLen |
maxLen |
20 | maxLen: "15" |
Ensures that all generated array of bytes have at most length maxLen |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Edge cases: ("", "\n", "\r", "\t", " ", "\u0000", "\ufff", -128, 127)
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("message_payload").type(BinaryType.instance())
.minLength(10)
.maxLength(100),
field().name("encrypted_data").type(BinaryType.instance())
.minLength(32)
.maxLength(256)
.enableNull(true)
.nullProbability(0.1),
field().name("signature").type(BinaryType.instance())
.minLength(64)
.maxLength(128)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field().name("unique_hash").type(BinaryType.instance())
.minLength(32)
.maxLength(32)
.isUnique(true),
field().name("calculated_checksum").type(BinaryType.instance())
.sql("CASE WHEN LENGTH(message_payload) > 50 THEN UNHEX('DEADBEEF') ELSE UNHEX('CAFEBABE') END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("message_payload").`type`(BinaryType)
.minLength(10)
.maxLength(100),
field.name("encrypted_data").`type`(BinaryType)
.minLength(32)
.maxLength(256)
.enableNull(true)
.nullProbability(0.1),
field.name("signature").`type`(BinaryType)
.minLength(64)
.maxLength(128)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field.name("unique_hash").`type`(BinaryType)
.minLength(32)
.maxLength(32)
.isUnique(true),
field.name("calculated_checksum").`type`(BinaryType)
.sql("CASE WHEN LENGTH(message_payload) > 50 THEN UNHEX('DEADBEEF') ELSE UNHEX('CAFEBABE') END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "message_payload"
type: "binary"
options:
minLen: 10
maxLen: 100
- name: "encrypted_data"
type: "binary"
options:
minLen: 32
maxLen: 256
enableNull: true
nullProb: 0.1
- name: "signature"
type: "binary"
options:
minLen: 64
maxLen: 128
enableEdgeCase: true
edgeCaseProb: 0.05
- name: "unique_hash"
type: "binary"
options:
minLen: 32
maxLen: 32
isUnique: true
- name: "calculated_checksum"
type: "binary"
options:
sql: "CASE WHEN LENGTH(message_payload) > 50 THEN UNHEX('DEADBEEF') ELSE UNHEX('CAFEBABE') END"
Array
Option | Default | Example | Description |
---|---|---|---|
arrayMinLen |
0 | arrayMinLen: "2" |
Ensures that all generated arrays have at least length arrayMinLen |
arrayMaxLen |
5 | arrayMaxLen: "15" |
Ensures that all generated arrays have at most length arrayMaxLen |
arrayType |
arrayType: "double" |
Inner data type of the array. Optional when using Java/Scala API. Allows for nested data types to be defined like struct | |
enableNull |
false | enableNull: "true" |
Enable/disable null values being generated |
nullProbability |
0.0 | nullProb: "0.1" |
Probability to generate null values if enableNull is true |
Sample
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field().name("transaction_amounts").type(ArrayType.instance())
.arrayType("double")
.arrayMinLength(1)
.arrayMaxLength(10),
field().name("tags").type(ArrayType.instance())
.arrayType("string")
.arrayMinLength(0)
.arrayMaxLength(5)
.enableNull(true)
.nullProbability(0.1),
field().name("priority_scores").type(ArrayType.instance())
.arrayType("integer")
.arrayMinLength(3)
.arrayMaxLength(3)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field().name("unique_identifiers").type(ArrayType.instance())
.arrayType("string")
.arrayMinLength(2)
.arrayMaxLength(8)
.isUnique(true),
field().name("calculated_values").type(ArrayType.instance())
.arrayType("double")
.sql("CASE WHEN SIZE(transaction_amounts) > 3 THEN ARRAY(1.0, 2.0, 3.0) ELSE ARRAY(0.5, 1.0) END")
);
csv("transactions", "app/src/test/resources/sample/csv/transactions")
.fields(
field.name("transaction_amounts").`type`(ArrayType)
.arrayType("double")
.arrayMinLength(1)
.arrayMaxLength(10),
field.name("tags").`type`(ArrayType)
.arrayType("string")
.arrayMinLength(0)
.arrayMaxLength(5)
.enableNull(true)
.nullProbability(0.1),
field.name("priority_scores").`type`(ArrayType)
.arrayType("integer")
.arrayMinLength(3)
.arrayMaxLength(3)
.enableEdgeCase(true)
.edgeCaseProbability(0.05),
field.name("unique_identifiers").`type`(ArrayType)
.arrayType("string")
.arrayMinLength(2)
.arrayMaxLength(8)
.isUnique(true),
field.name("calculated_values").`type`(ArrayType)
.arrayType("double")
.sql("CASE WHEN SIZE(transaction_amounts) > 3 THEN ARRAY(1.0, 2.0, 3.0) ELSE ARRAY(0.5, 1.0) END")
)
name: "csv_file"
steps:
- name: "transactions"
type: "csv"
options:
path: "app/src/test/resources/sample/csv/transactions"
fields:
- name: "transaction_amounts"
type: "array<double>"
options:
arrayMinLen: 1
arrayMaxLen: 10
- name: "tags"
type: "array<string>"
options:
arrayMinLen: 0
arrayMaxLen: 5
enableNull: true
nullProb: 0.1
- name: "priority_scores"
type: "array<integer>"
options:
arrayMinLen: 3
arrayMaxLen: 3
enableEdgeCase: true
edgeCaseProb: 0.05
- name: "unique_identifiers"
type: "array<string>"
options:
arrayMinLen: 2
arrayMaxLen: 8
isUnique: true
- name: "calculated_values"
type: "array<double>"
options:
sql: "CASE WHEN SIZE(transaction_amounts) > 3 THEN ARRAY(1.0, 2.0, 3.0) ELSE ARRAY(0.5, 1.0) END"