0.15.2
Deployed: 18-09-2025
Latest feature and fixes for Data Catering include:
- Various performance improvements
- Don't call
df.rdd
when zipping with index in foreign key logic - Don't call
df.rdd
when checking for unique values - When passing metadata to nested fields, don't re-create dataframe
- Use
unionByName
instead of checking if dataframe is empty then runningunion
- Set
enableSinkMetadata
to false by default - New unique value checking logic using bloom filters
- Add
uniqueBloomFilterNumItems
to generation config - Add
uniqueBloomFilterFalsePositiveProbability
to generation config - Check unique generation tuning documentation here
- Add
- Update default Spark memory settings
- Update
netty
andjsonsmart
libraries due to vulnerabilities - Add
enableUniqueCheckOnlyInBatch
to Scala and Java API - Check configuration documentation here